Sponsorlu Bağlantılar
   

Cebirin Tarihsel Gelişimi Hakkında Bilgi

Konu Dışı Başlıklar icinde Cebirin Tarihsel Gelişimi Hakkında Bilgi konusu , Cebirin Tarihsel Gelişimi Hakkında Bilgi Cebirin Tarihsel Gelişimi Eski Mısırlılar'da Cebir; İnceleyebildiğiniz kaynaklarda; Mısırlılarda, bugünkü cebirin herhangi bir şeklinin varlığına dair, kesin bilgiler görülmemektedir. Ancak; Mısırlılarda, bugünkü cebir konularına benzeyen, ...

Yeni Konu aç  Cevapla
 
Seçenekler
Alt 29-03-2011   #1 (permalink)
Standart Cebirin Tarihsel Gelişimi Hakkında Bilgi

Sponsorlu Bağlantılar


Cebirin Tarihsel Gelişimi Hakkında Bilgi
Cebirin Tarihsel Gelişimi

Eski Mısırlılar'da Cebir; İnceleyebildiğiniz kaynaklarda; Mısırlılarda, bugünkü cebirin herhangi bir şeklinin varlığına dair, kesin bilgiler görülmemektedir. Ancak; Mısırlılarda, bugünkü cebir konularına benzeyen, oldukça ilkel cebirin varlığı görülmektedir. Bu konuda a h a h e s a b ı adı verilen bir hesaplama türüne raslanlmaktadır. Bu hesaplama türü hakkında, Aydın Sayılı Mısırlılarda ve Mezopotamyalılarda Matematik, Astronomi ve Tıp adlı eserinde Berlin ve Rhind Papirüslerine dayanarak şu bilgiyi vermekte;
A h a kelimesi, grup ya da miktar anlamına gelmektedir. Böyle adlandırma, bir metot görüşü olarak yapılmış olmakla beraber, a h a hesaplarında, "Yanlış ve Deneme yoluyla Yoklayarak çözüm" metodu kullanılmış olduğu görülmektedir. Ayrıca bu usulle, bazı çözümler cebiri hatırlatıyor. Adı geçen eserde; bu tür hesabın nasıl yapıldığına dair, açıklamalı iki örnek verildikten sonra; müsteşrik S. Gantz'a atfen altı örnek belirtmektedir. Bunlar :

1) x/y = 4/3 ; xy = 12

2) xy = 40 ; x = (5/2)y

3) xy = 40 ; x/y = (1/3) + (1/15) = 2/5

4) 10xy = 120 ; y = (3/4)x

5) x2 + y2 = 100 ; y = (3/4)x

6) a2 + b2 = 400 ; a = 2x ; b = (3/2)x

Hemen belirtmek gerekir ki; bu örnekler, Mısırlıların a h a hesabında yaptıklarının, bugünkü cebrik düşünceye göre düzenlenmiş gösterim ve tertip şekilleridir.

Yukarıdaki altı tip örnekte görülebileceği gibi, problemler hep özel durumları temsil ediyor. Ancak, Aydın Sayılı adı geçen eserinde, bu konuda : "Mısırlı matematikçinin zihninde belli çözüm yollarının ve genel formüllerin bulunduğuna şüphe yoktur. Örneğin a h a hesaplarıyla ilgili papirüslerde, herhangi bir metot söz konusu edilmemesine rağmen, bunlarda özel bir metoda uyulduğu gayet sarih bir şekilde görülmektedir ... Problemlerin pedagojik amaçlarla bu şekilde tertiplenmiş oldukları söylenebilir."

Mezopotamyalılar'da Cebir
Mezopotamya Matematiğinin gelişmiş bir durumda olan dalı da cebirdir. Kaynaklar; "Mezopotamya Matematiğinde" gelişmiş bir cebir bilgisinin var olduğunu belirtmekte, bunun sonucu olarak da, bugünkü cebirin kurucuları olarak Mezopotamyalıları göstermektedir.

Mezopotamya cebirinin gelişim tarihini üç safhaya ayırabiliriz. Bunlar :
a) Retorik Safha : Bu safhada; bütün ayrıntılar normal cümleler halinde sözlü olarak belirtilmekte,
b) Kısaltma Safhası : Bu safhada, yer yer kısaltmalar, klişe ifadeler ve semboller kullanılmakla beraber, yine sözlü ifadeler az çok hakim durumda kalmakta.
c) Sembolik Safha : Bu safhada; a, b, x, y2, (=), ve (+) gibi sembol ve işaretler kullanarak, her şey sembolik denklemler ve münasebetler vasıtasıyla ifade edilmektedir.

Aydın Sayılı adı geçen eserinde "Mezopotamya Cebri" nin retorik safhada olduğunu belirtmekte ve şu bilgileri vermektedir.
" Mezopotamya cebir problemlerini ve çözümlerini ihtiva eden tabletlerde genellikle özel problemlerle ve bunların çözüm yolları ve çözüm sonuçları ile karşılaşıyoruz. Birinci derece denklemlerin çözümü Mezopotamyalılar için oldukça basit bir meseleydi. İkinci derece denklemleri ayrıntılı bir şekilde inceledikleri ve bu denklemlerin çözümlerinde büyük yetenek gösterdikleri görülmektedir. Metinlerde, bazen üçüncü derece denklemleriyle de karşılaşılıyor. Üçüncü derece denklemlerin bazı basit tiplerini çözümleyebiliyorlardı. Bu çözümlerde bir takım özel cetvellerden yararlanmış oldukları anlaşıldığı gibi, bazı örneklerin çözümünde tesadüfün de rolü olmuş olabilir. Ayrıca yoklama ve deneme suretiyle sonucun elde edilmesinden yararlanmış olabilirler. Genellikle, ikinciden daha yüksek dereceden denklemlerin ikinci dereceye indirgenmesi mümkün olanlarını çözümleyebiliyorlardı. Bu gibi çözümlerde derecenin indirilmesi için yardımcı bilinmeyenlerin kullanılması metodundan geniş ölçüde faydalanıyorlar

Eski Yunan'da Cebir

Çoğu kaynaklarda; cebir denildiğinde, Eski Roma çağı Yunan matematikçisi Diofantos'un (225-400) adından bahsedilir. Diofantos'un Aritmetika adlı bir eseri mevcut olup, bu eserde sistematik olmamak üzere, münferit bazı cebir konuları ile birlikte, ikinci derece denklemlerin çözümü görülmektedir. Ancak, Diofantos devri Yunan matematiği, bazı harf ve semboller ile ifade edilmekte olduğundan, Diofatos'un Jukarda adını belirttiğimiz eseri, Harezmi'deki cebir işaretleri ve sistemlerinin oynadığı rolden mahrum olması bakımından gerçek anlamda düzenli ve disiplinli bir cebir kitabı olmaktan uzaktır. Kaldı ki; Harezmi'nin Cebri ve'l Mukabele adlı eserinde görülen çözüm yolları, tamamen geometrik düşüncelerle temellendirilmiş olup, bu tür sistematik çözümü de, cebire ilk ithal edenin, Harezmi olduğu son yüzyıl içinde yapılan araştırmalarla ortaya konulmuştur.

Diofantos'ta görülen ikinci derece denklemlerin çözüm metotları, Mezopotamyalılarınkine benzemektedir. Aydın Sayılı adı geçen eserinde : "Mezopotamyalılarda görülen denklem çözme geleneklerinin, Diofantos'ta devam ettiği görülmektedir. Demek ki Diofantos'taki şekliyle Yunan cebri Mezopotamya cebirirıin hemen hemen, doğrudan doğruya bir devamını, Abdülhamit ibn-i vasi Türk (? - 847) ile Harezmi cebri ise tadil edilmiş bir şekildeki devamını teşkil etmektedir." Gene adı geçen eserde: Öklid'in Elementler adlı kitabında görülen:
(a+b)2 + (a-b)2 = 2 (a2+b2) veya
2(a2+b2) - (a+b)2 = (a-b)2 şeklindeki özdeşliğin, cebirsel ifadelerin basitleştirilmesi ve çözümlerin kolay tiplere irca edilmesi için, Mezopotamya matematikçileri tarafından kullanılmış olduğu belirtilir.

Eski Hint Dünyası'nda Cebir

İçinde bulunduğumuz yüzyılın araştırmaları; Eski Hint Dünyasında, özellikle 6., 7., 9. ve 12. yüzyıllarda, matematikle ilgili olarak, çağının bilgi seviyesinin üst düzeyinde ilginç bilimsel çalışmaların varlığını ortaya koymuştur. Eserleriyle adları zamanımıza kadar gelebilen, Hint matematikçileri, bilim tarihinde kendilerini etkin bir şekilde göstermektedir. Bunlardan belirttiğimiz yüzyıllar içinde yaşamış olanlardan : Brahmagupta (598-660), Aryabatha (6. yüzyıl), Mahavra (9. yüzyıl) ve Bhaskara'nın (1114-1158) adlarını belirtebiliriz.

Kaynaklar; Brahmagupta'nın Kutakhadyaka adlı eserinde de, münferit cebir konularının görüldüğünü, ancak bunların düzenli ve ayrıntılı olarak, cebir konularını kapsayan sistematik bir eser olmaktan uzak olduğunu belirtir.

Buraya kadar; adlarını belirttiğimiz, Diofantos'un Aritmetika ve Brahmagupta'nın Kutakhadyaka adlı iki eserde, ikinci derece denklemlerin çizim yoluyla (geometrik yolla) çözümlerinden bahis olmadığını ve mevcut bilgilerin de Mezopotamya menşeli olduğunda kaynaklar hemfikirdirler.

Eski Hint Dünyası'nda Cebir

İçinde bulunduğumuz yüzyılın araştırmaları; Eski Hint Dünyasında, özellikle 6., 7., 9. ve 12. yüzyıllarda, matematikle ilgili olarak, çağının bilgi seviyesinin üst düzeyinde ilginç bilimsel çalışmaların varlığını ortaya koymuştur. Eserleriyle adları zamanımıza kadar gelebilen, Hint matematikçileri, bilim tarihinde kendilerini etkin bir şekilde göstermektedir. Bunlardan belirttiğimiz yüzyıllar içinde yaşamış olanlardan : Brahmagupta (598-660), Aryabatha (6. yüzyıl), Mahavra (9. yüzyıl) ve Bhaskara'nın (1114-1158) adlarını belirtebiliriz.

Kaynaklar; Brahmagupta'nın Kutakhadyaka adlı eserinde de, münferit cebir konularının görüldüğünü, ancak bunların düzenli ve ayrıntılı olarak, cebir konularını kapsayan sistematik bir eser olmaktan uzak olduğunu belirtir.

Buraya kadar; adlarını belirttiğimiz, Diofantos'un Aritmetika ve Brahmagupta'nın Kutakhadyaka adlı iki eserde, ikinci derece denklemlerin çizim yoluyla (geometrik yolla) çözümlerinden bahis olmadığını ve mevcut bilgilerin de Mezopotamya menşeli olduğunda kaynaklar hemfikirdirler.

Türk-İslam Dünyası'nda Cebir

Objektif olarak hazırlanmış, matematik tarihi eserleri incelendiğinde, açık olarak şu hüküm görülür; Matematiğin geniş bir dalı olan cebire ait temel bilgilerin büyük bir çoğunluğu, 8. ile 16. yüzyıl Türk İslam Dünyası alimleri tarafından ilk olarak ortaya konulmuş ve belli bir noktaya kadar da geliştirilmiştir.

İslamiyetin Başlangıç Yılları
İslamiyetin başlangıç yıllarında; dini günlerin tespiti, namaz vakitlerinin belirlenmesi, takvim hazırlanması gibi dini problemlerle uğraşılmış olunduğu muhakkak ise de, o devir İslam matematikçilerinin, arazi ölçüleri, veraset hesapları, yükseklik tayini ve günlük yaşantı için gerekli pratik ölçme ve hesaplamalar hakkında bazı çalışmaların varlığı söz konusu olabilir. Hamid Dilgan; Büyük Matematikçi Ömer Hayyam adlı eserinde bu konuda şunları yazar : "İslam matematiği, ancak hicretin ikinci yüzyıl ortalarında Bağdat'ta doğmuştur."

Ancak bu tarihten itibaren, Bağdat'ta kurulan ve bugünkü Üniversitelere benzer kurum olan Dar-ül Hikme'de başta matematik olmak üzere, öteki bilimler hızla gelişmeye başlamıştır.

Gültekin BUZKAN; Ege Üniversitesi Matematik Bölümü

Kaynaklar:
Ege Üniversitesi Merkez Kütüphanesi matematik bölümü kitaplığı,
Lütfi Göker'in Fen bilimleri tarihi adlı eseri,
Aydın Sayılı'nın Mısırlılarda ve Mezopotamyalılarda, matematik astronomi ve tıp eseri.

 

Mavi_inci isimli Üye şimdilik offline konumundadır   Hızlı Cevap
Sponsorlu Bağlantılar
Yeni Konu aç  Cevapla

Sayfayı Paylaş

Hızlı Cevap
Kullanıcı isminiz: Giriş yapmak için Buraya tıklayın
Sorunun cevabını alttaki kutucuğa yazınız. (Gerekli)

Mesajınız:

Seçenekler


Benzer Konular
Konu Konuyu Başlatan Forum Cevaplar Son Mesaj
Radyonun Tarihsel Gelişimi Hakkında Bilgi Eylül Bilim & Teknoloji 0 10-07-2012 13:17
Psikolojinin Tarihsel Gelişimi Hakkında Bilgi Mavi_Sema Tarihi Bilgiler 0 15-06-2011 19:06
Geometrinin Tarihsel Gelişimi Hakkında Bilgi Mavi_inci Konu Dışı Başlıklar 0 30-03-2011 00:10
Fiziğin Tarihsel Gelişimi Hakkında Bilgi Mavi_inci Konu Dışı Başlıklar 0 30-03-2011 00:09
Kimya'nın Tarihsel Gelişimi Hakkında Bilgi Mavi_inci Konu Dışı Başlıklar 0 30-03-2011 00:07


Saat: 11:26.


Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2014, Jelsoft Enterprises Ltd.
Search Engine Optimization by vBSEO ©2011, Crawlability, Inc.
Frmartuklu.Net ©2008 - 2014